Sugarcane stem node identification algorithm based on improved YOLOv5

Author:

Xie Zhongjian,Li YuanhangORCID,Xiao Yao,Diao Yinzhou,Liao Hengyu,Zhang Yaya,Chen Xinwei,Wu Weilin,Wen Chunming,Li Shangping

Abstract

Identification of sugarcane stem nodes is generally dependent on high-performance recognition equipment in sugarcane seed pre-cutting machines and inefficient. Accordingly, this study proposes a novel lightweight architecture for the detection of sugarcane stem nodes based on the YOLOv5 framework, named G-YOLOv5s-SS. Firstly, the study removes the CBS and C3 structures at the end of the backbone network to fully utilize shallow-level feature information. This enhances the detection performance of sugarcane stem nodes. Simultaneously, it eliminates the 32 times down-sampled branches in the neck structure and the 20x20 detection heads at the prediction end, reducing model complexity. Secondly, a Ghost lightweight module is introduced to replace the conventional convolution module in the BottleNeck structure, further reducing the model’s complexity. Finally, the study incorporates the SimAM attention mechanism to enhance the extraction of sugarcane stem node features without introducing additional parameters. This improvement aims to enhance recognition accuracy, compensating for any loss in precision due to lightweight modifications. The experimental results showed that the average precision of the improved network for sugarcane stem node identification reached 97.6%, which was 0.6% higher than that of the YOLOv5 baseline network. Meanwhile, a model size of 2.6MB, 1,129,340 parameters, and 7.2G FLOPs, representing respective reductions of 82%, 84%, and 54.4%. Compared with mainstream one-stage target detection algorithms such as YOLOv4-tiny, YOLOv4, YOLOv5n, YOLOv6n, YOLOv6s, YOLOv7-tiny, and YOLOv7, G-YOLOv5s-SS achieved respective average precision improvements of 12.9%, 5.07%, 3.6%, 2.1%, 1.2%, 3%, and 0.4% in sugarcane stem nodes recognition. Meanwhile, the model size was compressed by 88.9%, 98.9%, 33.3%, 72%, 92.9%, 78.8% and 96.3%, respectively. Compared with similar studies, G-YOLOv5s-SS not only enhanced recognition accuracy but also considered model size, demonstrating an overall excellent performance that aligns with the requirements of sugarcane seed pre-cutting machines.

Funder

Introduction Talents Scientific Research Startup Fund of GUANGXI MINZU UNIVERSITY

Research on Critical Technologies and Mechanisms of Continuous Precise Planting for Transversal double-bud Sugarcane Planters

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. Prospect and Development of SugarcaneMechanized Harvest at Home and Abroad;Q Fan;Sugarcane and Canesugar,2020

2. Design and Implementation of the Control System for the Intelligent Even Sowing of the Single Bud Sugarcane Planter;D Zhang X;ModernAgricultural Equipment,2019

3. Machine Vision-Based Human Act-ion Recognition Using Spatio-Temporal Motion Features (STMF) with Difference Inte-nsity Distance Group Pattern (DIDGP);J Arunnehru;Electronics,2022

4. Prediction of hepatitis E using machine learning models;Y Guo;PLoS ONE,2020

5. Exploration of Machine Learning Approaches for Paddy Yield Prediction in Eastern Part of Tamilnadu;V Joshua;Agronomy,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3