Machine Vision-Based Human Action Recognition Using Spatio-Temporal Motion Features (STMF) with Difference Intensity Distance Group Pattern (DIDGP)

Author:

Arunnehru JawaharlalnehruORCID,Thalapathiraj Sambandham,Dhanasekar RavikumarORCID,Vijayaraja Loganathan,Kannadasan RajuORCID,Khan Arfat Ahmad,Haq Mohd AnulORCID,Alshehri MohammedORCID,Alwanain Mohamed Ibrahim,Keshta IsmailORCID

Abstract

In recent years, human action recognition is modeled as a spatial-temporal video volume. Such aspects have recently expanded greatly due to their explosively evolving real-world uses, such as visual surveillance, autonomous driving, and entertainment. Specifically, the spatio-temporal interest points (STIPs) approach has been widely and efficiently used in action representation for recognition. In this work, a novel approach based on the STIPs is proposed for action descriptors i.e., Two Dimensional-Difference Intensity Distance Group Pattern (2D-DIDGP) and Three Dimensional-Difference Intensity Distance Group Pattern (3D-DIDGP) for representing and recognizing the human actions in video sequences. Initially, this approach captures the local motion in a video that is invariant to size and shape changes. This approach extends further to build unique and discriminative feature description methods to enhance the action recognition rate. The transformation methods, such as DCT (Discrete cosine transform), DWT (Discrete wavelet transforms), and hybrid DWT+DCT, are utilized. The proposed approach is validated on the UT-Interaction dataset that has been extensively studied by past researchers. Then, the classification methods, such as Support Vector Machines (SVM) and Random Forest (RF) classifiers, are exploited. From the observed results, it is perceived that the proposed descriptors especially the DIDGP based descriptor yield promising results on action recognition. Notably, the 3D-DIDGP outperforms the state-of-the-art algorithm predominantly.

Funder

Majmaah University

Researchers Supporting Program, AlMaarefa University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3