The Black Necrotic Lesion Enhanced Fusarium graminearum Resistance in Wheat

Author:

Zhao Lanfei,Su Peisen,Hou Bingqian,Wu Hongyan,Fan Yanhui,Li Wen,Zhao Jinxiao,Ge Wenyang,Xu Shoushen,Wu Shiwen,Ma Xin,Li Anfei,Bai Guihua,Wang Hongwei,Kong Lingrang

Abstract

Fusarium head blight, mainly incited by Fusarium graminearum, is a devastating wheat disease worldwide. Diverse Fusarium head blight (FHB) resistant sources have been reported, but the resistance mechanisms of these sources remain to be investigated. FHB-resistant wheat germplasm often shows black necrotic lesions (BNLs) around the infection sites. To determine the relationship between BNL and FHB resistance, leaf tissue of a resistant wheat cultivar Sumai 3 was inoculated with four different F. graminearum isolates. Integrated metabolomic and transcriptomic analyses of the inoculated samples suggested that the phytohormone signaling, phenolamine, and flavonoid metabolic pathways played important roles in BNL formation that restricted F. graminearum extension. Exogenous application of flavonoid metabolites on wheat detached leaves revealed the possible contribution of flavonoids to BNL formation. Exogenous treatment of either salicylic acid (SA) or methyl jasmonate (MeJA) on wheat spikes significantly reduced the FHB severity. However, exogenous MeJA treatment prevented the BNL formation on the detached leaves of FHB-resistant wheat Sumai 3. SA signaling pathway influenced reactive oxygen species (ROS) burst to enhance BNL formation to reduce FHB severity. Three key genes in SA biosynthesis and signal transduction pathway, TaICS1, TaNPR1, and TaNPR3, positively regulated FHB resistance in wheat. A complex temporal interaction that contributed to wheat FHB resistance was detected between the SA and JA signaling pathways. Knowledge of BNLs extends our understanding of the molecular mechanisms of FHB resistance in wheat and will benefit the genetic improvement of wheat FHB resistance.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3