Polydopamine-Modified Metal–Organic Frameworks, NH2-Fe-MIL-101, as pH-Sensitive Nanocarriers for Controlled Pesticide Release

Author:

Shan Yongpan,Xu Chunli,Zhang Hongjun,Chen Huiping,Bilal Muhammad,Niu Shujun,Cao LidongORCID,Huang Qiliang

Abstract

Recently, metal–organic frameworks (MOFs) have become a dazzling star among porous materials used in many fields. Considering their intriguing features, MOFs have great prospects for application in the field of sustainable agriculture, especially as versatile pesticide-delivery vehicles. However, the study of MOF-based platforms for controlled pesticide release has just begun. Controlled pesticide release responsive to environmental stimuli is highly desirable for decreased agrochemical input, improved control efficacy and diminished adverse effects. In this work, simple, octahedral, iron-based MOFs (NH2-Fe-MIL-101) were synthesized through a microwave-assisted solvothermal method using Fe3+ as the node and 2-aminoterephthalic acid as the organic ligand. Diniconazole (Dini), as a model fungicide, was loaded into NH2-Fe-MIL-101 to afford Dini@NH2-Fe-MIL-101 with a satisfactory loading content of 28.1%. The subsequent polydopamine (PDA) modification could endow Dini with pH-sensitive release patterns. The release of Dini from PDA@Dini@NH2-Fe-MIL-101 was much faster in an acidic medium compared to that in neutral and basic media. Moreover, Dini@NH2-Fe-MIL-101 and PDA@Dini@NH2-Fe-MIL-101 displayed good bioactivities against the pathogenic fungus causing wheat head scab (Fusarium graminearum). This research sought to reveal the feasibility of versatile MOFs as a pesticide-delivery platform in sustainable crop protection.

Funder

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3