Affiliation:
1. College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
2. Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
3. Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
Abstract
Serine protease is an extracellular protease secreted by biocontrol fungi that can effectively control nematode diseases by degrading nematode eggshells and enhancing plant resistance. Trichoderma longibrachiatum T6, an important biocontrol fungus, has been demonstrated to effectively parasitize and degrade Heterodera avenae cysts, eggs, and second-stage juveniles (J2s). However, the genes that encoding serine protease and their functions in T. longibrachiatum T6 have not been thoroughly investigated. In this study, we successfully cloned and sequenced the serine protease gene TlSP1 in T. longibrachiatum T6. Our results revealed that the expression level of the TlSP1 gene was induced and significantly increased in T. longibrachiatum T6 after inoculation with H. avenae cysts. The full-length sequence of the coding region (CDS) of TlSP1 gene was 1230 bp and encoded a protein consisting of 409 amino acids. Upon the transformation of the TlSP1 gene into Pichia pastoris X33, the purified recombinant TlSP1 protein exhibited optimal activity at a temperature of 50 °C and pH 8.0. Following 4–10-day of treatment with the purified recombinant TlSP1 protein, the eggshells and content were dissolved and exuded. The number of nematodes invading wheat roots was reduced by 38.43% in the group treated with both TlSP1 and eggs on one side (P1+N) compared to the control group, while the number of nematodes invading wheat roots was reduced by 30.4% in the TlSP1 and eggs two-sided treatment group (P1/N). Furthermore, both the P1+N and P1/N treatments significantly upregulated genes associated with defense enzymes (TaPAL, TaCAT, TaSOD, and TaPOD), genes involved in the lignin synthesis pathway (TaC4H, Ta4CL2, TaCAD1, and TaCAD12), and salicylic acid (SA)-responsive genes (TaNPR1, TaPR1, and TaPR2) and led to the high expression of jasmonic acid (JA)-responsive genes (TaPR4, TaOPR3, and TaAOS2). This study has highlighted the significant role of the TlSP1 gene in facilitating H. avenae eggshells’ dissolution, preventing nematode invasion in the host plant, and boosting plant resistance in wheat.
Funder
Fuxi Outstanding Talent Cultivation Program, Gansu Agricultural University
Gansu Provincial Science Fund for Distinguished Young Scholars
Gansu Provincial Major Science and Technology Project
National Natural Science Foundation of China
Lanzhou Science and Technology Project