Accurate and fast detection of tomatoes based on improved YOLOv5s in natural environments

Author:

Touko Mbouembe Philippe Lyonel,Liu Guoxu,Park Sungkyung,Kim Jae Ho

Abstract

Uneven illumination, obstruction of leaves or branches, and the overlapping of fruit significantly affect the accuracy of tomato detection by automated harvesting robots in natural environments. In this study, a proficient and accurate algorithm for tomato detection, called SBCS-YOLOv5s, is proposed to address this practical challenge. SBCS-YOLOv5s integrates the SE, BiFPN, CARAFE and Soft-NMS modules into YOLOv5s to enhance the feature expression ability of the model. First, the SE attention module and the C3 module were combined to form the C3SE module, replacing the original C3 module within the YOLOv5s backbone architecture. The SE attention module relies on modeling channel-wise relationships and adaptive re-calibration of feature maps to capture important information, which helps improve feature extraction of the model. Moreover, the SE module’s ability to adaptively re-calibrate features can improve the model’s robustness to variations in environmental conditions. Next, the conventional PANet multi-scale feature fusion network was replaced with an efficient, weighted Bi-directional Feature Pyramid Network (BiFPN). This adaptation aids the model in determining useful weights for the comprehensive fusion of high-level and bottom-level features. Third, the regular up-sampling operator is replaced by the Content Aware Reassembly of Features (CARAFE) within the neck network. This implementation produces a better feature map that encompasses greater semantic information. In addition, CARAFE’s ability to enhance spatial detail helps the model discriminate between closely spaced fruits, especially for tomatoes that overlap heavily, potentially reducing the number of merging detections. Finally, for heightened identification of occluded and overlapped fruits, the conventional Non-Maximum-Suppression (NMS) algorithm was substituted with the Soft-NMS algorithm. Since Soft-NMS adopts a continuous weighting scheme, it is more adaptable to varying object sizes, improving the handling of small or large fruits in the image. Remarkably, this is carried out without introducing changes to the computational complexity. The outcome of the experiments showed that SBCS-YOLOv5s achieved a mean average precision (mAP (0.5:0.95)) of 87.7%, which is 3.5% superior to the original YOLOv5s model. Moreover, SBCS-YOLOv5s has a detection speed of 2.6 ms per image. Compared to other state-of-the-art detection algorithms, SBCS-YOLOv5s performed the best, showing tremendous promise for tomato detection in natural environments.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3