Affiliation:
1. School of Electrical and Mechanical Engineering, Lingnan Normal University, Zhanjiang 524048, China
2. Macau Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China
Abstract
The pitaya is a common fruit in southern China, but the growing environment of pitayas is complex, with a high density of foliage. This intricate natural environment is a significant contributing factor to misidentification and omission in the detection of the growing state of pitayas. In this paper, the growth states of pitayas are classified into three categories: flowering, immature, and mature. In order to reduce the misidentification and omission in the recognition process, we propose a detection model based on an improvement of the network structure of YOLOv8, namely YOLOv8n-CBN. The YOLOv8n-CBN model is based on the YOLOv8n network structure, with the incorporation of a CBAM attention mechanism module, a bidirectional feature pyramid network (BiFPN), and a C2PFN integration. Additionally, the C2F module has been replaced by a C2F_DCN module containing a deformable convolution (DCNv2). The experimental results demonstrate that YOLOv8n-CBN has enhanced the precision, recall, and mean average precision of the YOLOv8n model with an IoU threshold of 0.5. The model demonstrates a 91.1% accuracy, a 3.1% improvement over the original model, and an F1 score of 87.6%, a 3.4% enhancement over the original model. In comparison to YOLOv3-tiny, YOLOv5s, and YOLOv5m, which are highly effective target detection models, the mAP@0.50–0.95 of our proposed YOLOv8n-CBN is observed to be 10.1%, 5.0%, and 1.6% higher, respectively. This demonstrates that YOLOv8n-CBN is capable of more accurately identifying and detecting the growth status of pitaya in a natural environment.
Funder
Research on Intelligent Monitoring Technology of Pitaya Growth Cycle Based on Machine Vision
Special Talent Fund of Lingnan Normal University