Forecast calibrations of surface air temperature over Xinjiang based on U-net neural network

Author:

Zhu Yanhe,Zhi Xiefei,Lyu Yang,Zhu Shoupeng,Tong Hua,Mamtimin Ali,Zhang Hailiang,Huo Wen

Abstract

In this study, a deep learning method named U-net neural network is utilized to calibrate the gridded forecast of surface air temperature from the Global Ensemble Forecasting System (GEFS), with forecast lead times of 1–7 days in Xinjiang. The calibration performance of U-net is compared with three conventional postprocessing methods: unary linear regression (ULR), the decaying averaging method (DAM) and Quantile Mapping (QM). Results show that biases of the raw GEFS forecasts are mainly distributed in the Altai Mountains, the Junggar Basin, the Tarim Basin and the Kunlun Mountains. The four postprocessing methods effectively improve the forecast skills for all lead times, whereas U-net shows the best correction performance with the lowest mean absolute error (MAE) and the highest hit rate of 2°C (HR2) and pattern correlation coefficient (PCC). The U-net model considerably reduces the warm biases of the raw forecasts. The skill improvement magnitudes are greater in southern than northern Xinjiang, showing a higher mean absolute error skill score (MAESS). Furthermore, in order to distinguish the error sources of each forecasting scheme and to reveal their capabilities of calibrating errors of different sources, the error decomposition analysis is carried out based on the mean square errors. It shows that the bias term is the leading source of error in the raw forecasts, and barely changes as the lead time increases, which is mainly distributed in Tarim Basin and Kunlun Mountains. All four forecast calibrations effectively reduce the bias and distribution error of the raw forecasts, but only the U-net significantly reduces the sequence error.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3