Significant advancement in subseasonal-to-seasonal summer precipitation ensemble forecast skills in China mainland through an innovative hybrid CSG-UNET method

Author:

Lyu Yang,Zhu ShoupengORCID,Zhi Xiefei,Wang Jingyu,Ji Yan,Fan Yi,Dong Fu

Abstract

Abstract Reliable Subseasonal-to-Seasonal (S2S) forecasts of precipitation are critical for disaster prevention and mitigation. In this study, an innovative hybrid method CSG-UNET combining the UNET with the censored and shifted gamma distribution based ensemble model output statistic (CSG-EMOS), is proposed to calibrate the ensemble precipitation forecasts from ECMWF over the China mainland during boreal summer. Additional atmospheric variable forecasts and the data augmentation are also included to deal with the potential issues of low signal-to-noise ratio and relatively small sample sizes in traditional S2S precipitation forecast correction. The hybrid CSG-UNET exhibits a notable advantage over both individual UNET and CSG-EMOS in improving ensemble precipitation forecasts, simultaneously improving the forecast skills for lead times of 1–2 weeks and further extending the effective forecast timeliness to ∼4 weeks. Specifically, the climatology-based Brier Skill Scores are improved by ∼0.4 for the extreme precipitation forecasts almost throughout the whole timescale compared with the ECMWF. Feature importance analyze towards CSG-EMOS model indicates that the atmospheric factors make great contributions to the prediction skill with the increasing lead times. The CSG-UNET method is promising in subseasonal precipitation forecasts and could be applied to the routine forecast of other atmospheric and ocean phenomena in the future.

Funder

National Natural Science Foundation of China

Basic Research Fund of CAMS

the Postgraduate Research and Practice innovation Program of Jiangsu Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3