Deep Learning for Daily 2‐m Temperature Downscaling

Author:

Ding Shuyan1ORCID,Zhi Xiefei1ORCID,Lyu Yang1,Ji Yan1,Guo Weijun2

Affiliation:

1. Key Laboratory of Meteorology Disaster Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science and Technology Nanjing China

2. Xiamen Air Traffic Management Station of China Civil Aviation Xiamen China

Abstract

AbstractThis study proposes a novel method, which is a U‐shaped convolutional neural network that combines non‐local attention mechanisms, Res2net residual modules, and terrain information (UNR‐Net). The original U‐Net method and the linear regression (LR) method are conducted as benchmarks. Generally, the UNR‐Net has demonstrated promise in performing a 10× downscaling for daily 2‐m temperature over North China with lead times of 1–7 days and shows superiority to the U‐Net and LR methods. To be specific, U‐Net and UNR‐Net demonstrate higher Nash‐Sutcliffe Efficiency coefficient values compared to LR by 0.052 and 0.077, respectively. The corresponding improvements in pattern correlation coefficient are 0.013 and 0.016, while the root mean square error values are higher by 0.22 and 0.338, respectively. Additionally, the structural similarity index metric is higher by 0.033 and lower by 0.015. Furthermore, regions with significant errors are primarily distributed in complex terrain areas such as the Taihang Mountains, where UNR‐Net exhibits noticeable improvements. In addition, the 12 components‐based error decomposition method is proposed to analyze the error source of different models. Generally, the smallest errors are observed during the summer season and the sequence error component is proven to be the main source error of 2‐m temperature forecasts. Furthermore, UNR‐Net consistently demonstrates the lowest errors among all 12 error components. Therefore, combining the numerical weather prediction model and deep learning method is very promising in downscaling temperature forecasts and can be applied to routine forecasting of other atmospheric variables in the future.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3