A functional autoregressive approach for modeling and forecasting short-term air temperature

Author:

Shah Ismail,Mubassir Pir,Ali Sajid,Albalawi Olayan

Abstract

A precise forecast of atmospheric temperatures is essential for various applications such as agriculture, energy, public health, and transportation. Modern advancements in technology have led to the development of sensors and other tools to collect high-frequency air temperature data. However, accurate forecasts are challenging due to their specific features including high dimensionality, non-linearity, seasonal dependency, etc. To address these forecasting challenges, this study proposes a functional modeling framework based on the components estimation technique by partitioning the air temperature time series into deterministic and stochastic components. The deterministic component that comprises daily and yearly seasonalities is modeled and forecasted using generalized additive modeling techniques. Similarly, the stochastic component that accounts for the short-term dynamics of the process is modeled and forecasted by a functional autoregressive model, autoregressive integrated moving average, and vector autoregressive models. To evaluate the performance of models, hourly air temperature data are collected from Islamabad, Pakistan, and one-day-ahead out-of-sample forecasts are obtained for a complete year. The forecasting results from all models are compared using the root mean squared error, mean absolute error, and mean absolute percentage error. The results suggest that the proposed FAR model performs relatively well compared to ARIMA and VAR models, resulting in lower out-of-sample forecasting errors. The findings of this research can facilitate informed decision-making across sectors, optimize resource allocation, enhance public safety, and promote socio-economic resilience.

Publisher

Frontiers Media SA

Reference44 articles.

1. Weather forecasting model using artificial neural network;Abhishek;Procedia Technol.,2012

2. An application of time series analysis for weather forecasting;Agrawal;Int. J. Eng. Res. Appl.,2012

3. Relationship between extreme temperature and electricity demand in Pakistan;Ali;Int. J. Energy Environ. Eng.,2013

4. Forecasting performance comparison of daily maximum temperature using arma based methods;Asha,2021

5. Air temperature forecasting using artificial neural network for ararat valley;Astsatryan;Earth Sci. Inf.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3