Plasma-Assisted Nanofabrication: The Potential and Challenges in Atomic Layer Deposition and Etching

Author:

Chiappim WilliamORCID,Neto Benedito BotanORCID,Shiotani Michaela,Karnopp JúliaORCID,Gonçalves Luan,Chaves João Pedro,Sobrinho Argemiro da SilvaORCID,Leitão Joaquim PratasORCID,Fraga MarianaORCID,Pessoa RodrigoORCID

Abstract

The growing need for increasingly miniaturized devices has placed high importance and demands on nanofabrication technologies with high-quality, low temperatures, and low-cost techniques. In the past few years, the development and recent advances in atomic layer deposition (ALD) processes boosted interest in their use in advanced electronic and nano/microelectromechanical systems (NEMS/MEMS) device manufacturing. In this context, non-thermal plasma (NTP) technology has been highlighted because it allowed the ALD technique to expand its process window and the fabrication of several nanomaterials at reduced temperatures, allowing thermosensitive substrates to be covered with good formability and uniformity. In this review article, we comprehensively describe how the NTP changed the ALD universe and expanded it in device fabrication for different applications. We also present an overview of the efforts and developed strategies to gather the NTP and ALD technologies with the consecutive formation of plasma-assisted ALD (PA-ALD) technique, which has been successfully applied in nanofabrication and surface modification. The advantages and limitations currently faced by this technique are presented and discussed. We conclude this review by showing the atomic layer etching (ALE) technique, another development of NTP and ALD junction that has gained more and more attention by allowing significant advancements in plasma-assisted nanofabrication.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3