Modeling and Comparative Analysis of Atmospheric Pressure Anodic Carbon Arc Discharge in Argon and Helium–Producing Carbon Nanostructures

Author:

Saifutdinov Almaz1ORCID,Timerkaev Boris1

Affiliation:

1. Department of General Physics, Kazan National Research Technical University named after A.N. Tupolev-KAI, K. Marx St., 10, 420071 Kazan, Russia

Abstract

In this work, within the framework of a unified model for the discharge gap and electrodes, a comparative numerical analysis was carried out on the effect of evaporation of graphite anode material on the characteristics of the arc discharge in helium and argon. The effect of changing the plasma-forming ion, in which the ion of evaporated atomic carbon becomes the dominant ion, is demonstrated. For an arc discharge in helium, this effect is accompanied by a jump-like change in the dependence of the current density on voltage (CVC), and smoothly for a discharge in argon. With regard to the dynamics of the ignition of an arc discharge, it is shown that during the transition from glow discharge to arc in helium, the discharge parameters are also accompanied by an abrupt change, while in argon, this transition is smooth. This is due to the fact that the ionization potentials, as well as the ionization cross sections, differ significantly for helium and carbon, and are close in value for helium and argon. For various points on the CVC, the density distributions of the charged and neutral particles of an inert gas and evaporated gases are presented.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3