Approximating the Steady-State Temperature of 3D Electronic Systems with Convolutional Neural Networks

Author:

Stipsitz MonikaORCID,Sanchis-Alepuz HèliosORCID

Abstract

Thermal simulations are an important part of the design process in many engineering disciplines. In simulation-based design approaches, a considerable amount of time is spent by repeated simulations. An alternative, fast simulation tool would be a welcome addition to any automatized and simulation-based optimisation workflow. In this work, we present a proof-of-concept study of the application of convolutional neural networks to accelerate thermal simulations. We focus on the thermal aspect of electronic systems. The goal of such a tool is to provide accurate approximations of a full solution, in order to quickly select promising designs for more detailed investigations. Based on a training set of randomly generated circuits with corresponding finite element solutions, the full 3D steady-state temperature field is estimated using a fully convolutional neural network. A custom network architecture is proposed which captures the long-range correlations present in heat conduction problems. We test the network on a separate dataset and find that the mean relative error is around 2% and the typical evaluation time is 35 ms per sample (2 ms for evaluation, 33 ms for data transfer). The benefit of this neural-network-based approach is that, once training is completed, the network can be applied to any system within the design space spanned by the randomized training dataset (which includes different components, material properties, different positioning of components on a PCB, etc.).

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steady-State temperature field prediction for FPGA chips with reduced number of temperature sensors;Measurement;2025-01

2. Generative Multi-Physics Models for System Power and Thermal Analysis Using Conditional Generative Adversarial Networks;2023 IEEE 32nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS);2023-10-15

3. Thermal Estimation for 3D-ICs Through Generative Networks;2023 IEEE International 3D Systems Integration Conference (3DIC);2023-05-10

4. Feature Paper Collection of Mathematical and Computational Applications—2022;Mathematical and Computational Applications;2023-01-28

5. A Thermal Machine Learning Solver For Chip Simulation;Proceedings of the 2022 ACM/IEEE Workshop on Machine Learning for CAD;2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3