Analysis of the Effect of a Vertical Magnetic Field on Melt Convection and Oxygen Transport During Directional Solidification of Multi-Crystalline Silicon by Numerical Simulation

Author:

Song Botao,Luo Yufeng,Rao Senlin,Zhang Fayun,Hu Yun

Abstract

Melt convection during the directional solidification process of multi-crystalline silicon plays a critical role in the transport of impurities. The utilization of a static magnetic field is an effective way to control the melt convection pattern. Studying the effect of the Lorentz force induced by the vertical magnetic field (VMF) on the melt convection of silicon in detail is beneficial to optimize the magnetic field parameters in the production process. Based on the numerical simulation method of multi-physics coupling, this paper explores the effects of different VMF intensities on the convection of silicon melt and the transport of oxygen in the melt during the directional solidification of polycrystalline silicon. The results show that in the first 125 minutes of the crystallization stage, the melt convection velocity is affected significantly by the magnetic field intensities. When different convection circulations are present in the silicon melt, the upper circulation easily transports oxygen to the furnace atmosphere, and the subjacent circulation easily lead to the retention and accumulation of oxygen. Enhancing the VMF intensity to a certain extent can reduce the size of the oxygen retention region in the silicon melt, and the time of the first disappearance of the subjacent circulation near the sidewall of the crucible is shortened. Then the average oxygen concentration in the silicon melt can be reduced. However, a larger vertical magnetic field intensity can result in greater average oxygen concentration in the oxygen retention region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3