Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking Trajectories for Vertical Parking Spaces

Author:

Shi Junren1ORCID,Li Kexin1ORCID,Piao Changhao1,Gao Jun2,Chen Lizhi1

Affiliation:

1. School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

This paper proposes a vehicle-parking trajectory planning method that addresses the issues of a long trajectory planning time and difficult training convergence during automatic parking. The process involves two stages: finding a parking space and parking planning. The first stage uses model predictive control (MPC) for trajectory tracking from the initial position of the vehicle to the starting point of the parking operation. The second stage employs the proximal policy optimization (PPO) algorithm to transform the parking behavior into a reinforcement learning process. A four-dimensional reward function is set to evaluate the strategy based on a formal reward, guiding the adjustment of neural network parameters and reducing the exploration of invalid actions. Finally, a simulation environment is built for the parking scene, and a network framework is designed. The proposed method is compared with the deep deterministic policy gradient and double-delay deep deterministic policy gradient algorithms in the same scene. Results confirm that the MPC controller accurately performs trajectory-tracking control with minimal steering wheel angle changes and smooth, continuous movement. The PPO-based reinforcement learning method achieves shorter learning times, totaling only 30% and 37.5% of the deep deterministic policy gradient (DDPG) and twin-delayed deep deterministic policy gradient (TD3), and the number of iterations to reach convergence for the PPO algorithm with the introduction of the four-dimensional evaluation metrics is 75% and 68% shorter compared to the DDPG and TD3 algorithms, respectively. This study demonstrates the effectiveness of the proposed method in addressing a slow convergence and long training times in parking trajectory planning, improving parking timeliness.

Funder

The National Key Research and Development Program of China

Chongqing Postdoctoral Research Special Funding Project

school-level research projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3