Affiliation:
1. Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
2. Department of Cognitive Robotics, Delft University of Technology, 2628 Delft, The Netherlands;
Abstract
In this review, we provide an overview of emerging trends and challenges in the field of intelligent and autonomous, or self-driving, vehicles. Recent advances in the field of perception, planning, and decision-making for autonomous vehicles have led to great improvements in functional capabilities, with several prototypes already driving on our roads and streets. Yet challenges remain regarding guaranteed performance and safety under all driving circumstances. For instance, planning methods that provide safe and system-compliant performance in complex, cluttered environments while modeling the uncertain interaction with other traffic participants are required. Furthermore, new paradigms, such as interactive planning and end-to-end learning, open up questions regarding safety and reliability that need to be addressed. In this survey, we emphasize recent approaches for integrated perception and planning and for behavior-aware planning, many of which rely on machine learning. This raises the question of verification and safety, which we also touch upon. Finally, we discuss the state of the art and remaining challenges for managing fleets of autonomous vehicles.
Cited by
544 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献