Fast Nonlinear Predictive Control Using Classical and Parallel Wiener Models: A Comparison for a Neutralization Reactor Process

Author:

Nebeluk Robert1ORCID,Ławryńczuk Maciej1ORCID

Affiliation:

1. Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract

The Wiener model, composed of a linear dynamical block and a nonlinear static one connected in series, is frequently used for prediction in Model Predictive Control (MPC) algorithms. The parallel structure is an extension of the classical Wiener model; it is expected to offer better modeling accuracy and increase the MPC control quality. This work discusses the benefits of using the parallel Wiener model in MPC. It has three objectives. Firstly, it describes a fast MPC algorithm in which parallel Wiener models are used for online prediction. In the presented approach, sophisticated trajectory linearization is performed online, which leads to computationally fast quadratic optimization. The second objective of this work is to study the influence of the model structure on modeling accuracy. The well-known neutralization benchmark process is considered. It is shown that the parallel Wiener models in the open-loop mode generate significantly fewer errors than the classical structure. This work’s third objective is to validate the efficiency of parallel Wiener models in closed-loop MPC. For the neutralization process, it is demonstrated that parallel models demonstrate better control quality using various indicators, but the difference between the classical and parallel models is not significant.

Funder

Warsaw University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3