Abstract
This paper presents a resonant pressure microsensor with the measurement range of 1 MPa suitable for the soaring demands of industrial gas pressure calibration equipment. The proposed microsensor consists of an SOI layer as a sensing element and a glass cap for vacuum packaging. The sensing elements include a pressure-sensitive diaphragm and two resonators embedded in the diaphragm by anchor structures. The resonators are excited by a convenient Lorentz force and detected by electromagnetic induction, which can maintain high signal outputs. In operation, the pressure under measurement bends the pressure-sensitive diaphragm of the microsensor, producing frequency shifts of the two underlining resonators. The microsensor structures were designed and optimized using finite element analyses and a 4” SOI wafer was employed in fabrications, which requires only one photolithographic step. Experimental results indicate that the Q-factors of the resonators are higher than 25,000 with a differential temperature sensitivity of 0.22 Hz/°C, pressure sensitivities of 6.6 Hz/kPa, and −6.5 Hz/kPa, which match the simulation results of differential temperature sensitivity of 0.2 Hz/°C and pressure sensitivities of ±6.5 Hz/kPa. In addition, characterizations based on a closed-loop manner indicate that the presented sensor demonstrates low fitting errors within 0.01% FS, high accuracy of 0.01% FS in the pressure range of 20 kPa to 1 MPa and temperature range of −55 to 85 °C, and the long-term stability within 0.01% FS in a 156-day period under the room temperature.
Funder
the National Key Research and Development Program
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献