Research on UAV Robust Adaptive Positioning Algorithm Based on IMU/GNSS/VO in Complex Scenes

Author:

Dai JunORCID,Hao Xiangyang,Liu Songlin,Ren Zongbin

Abstract

As an important component of autonomous intelligent systems, the research on autonomous positioning algorithms used by UAVs is of great significance. In order to resolve the problem whereby the GNSS signal is interrupted, and the visual sensor lacks sufficient feature points in complex scenes, which leads to difficulties in autonomous positioning, this paper proposes a new robust adaptive positioning algorithm that ensures the robustness and accuracy of autonomous navigation and positioning in UAVs. On the basis of the combined navigation model of vision/inertial navigation and satellite/inertial navigation, based on ESKF, a multi-source fusion model based on a federated Kalman filter is here established. Furthermore, a robust adaptive localization algorithm is proposed, which uses robust equivalent weights to estimate the sub-filters, and then uses the sub-filter state covariance to adaptively assign information sharing coefficients. After simulation experiments and dataset verification, the results show that the robust adaptive algorithm can effectively limit the impact of gross errors in observations and mathematical model deviations and can automatically update the information sharing coefficient online according to the sub-filter equivalent state covariance. Compared with the classical federated Kalman algorithm and the adaptive federated Kalman algorithm, our algorithm can meet the real-time requirements of navigation, and the accuracy of position, velocity, and attitude measurement is improved by 2–3 times. The robust adaptive localization algorithm proposed in this paper can effectively improve the reliability and accuracy of autonomous navigation systems in complex scenes. Moreover, the algorithm is general—it is not intended for a specific scene or a specific sensor combination– and is applicable to individual scenes with varied sensor combinations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Overview of the development of foreign ground unmanned autonomous systems in 2019;Sun;Aerodyn. Missile J.,2020

2. Long-term Autonomous Environment Adaptation of Mobile Robots: State-of-the-art Methods and Prospects;Cao;Acta Autom. Sin.,2020

3. Current trends in the development of intelligent unmanned autonomous systems

4. A Multisensor Navigation System Based on an Adaptive Fault-Tolerant GOF Algorithm

5. Principles of GNSS, inertial, and multi-sensor integrated navigation systems;Groves;Ind. Robot.,2013

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3