Research on Kinematic and Static Filtering of the ESKF Based on INS/GNSS/UWB

Author:

Ren Zongbin1ORCID,Liu Songlin1,Dai Jun12ORCID,Lv Yunzhu1,Fan Yun3

Affiliation:

1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China

2. School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450001, China

3. School of Foreign Studies, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

With the widespread development of multiple sensors for UGVs, the multi-source fusion-navigation system, which overcomes the limitations of the use of a single sensor, is becoming increasingly important in the field of autonomous navigation for UGVs. Because federated filtering is not independent between the filter-output quantities, owing to the use of the same state equation in each of the local sensors, a new kinematic and static multi-source fusion-filtering algorithm based on the error-state Kalman filter (ESKF) is proposed in this paper for the positioning-state estimation of UGVs. The algorithm is based on INS/GNSS/UWB multi-source sensors, and the ESKF replaces the traditional Kalman filter in kinematic and static filtering. After constructing the kinematic EKSF based on GNSS/INS and the static ESKF based on UWB/INS, the error-state vector solved by the kinematic ESKF was injected and set to zero. On this basis, the kinematic ESKF filter solution was used as the state vector of the static ESKF for the rest of the static filtering in a sequential form. Finally, the last static ESKF filtering solution was used as the integral filtering solution. Through mathematical simulations and comparative experiments, it is demonstrated that the proposed method converges quickly, and the positioning accuracy of the method was improved by 21.98% and 13.03% compared to the loosely coupled GNSS/INS and the loosely coupled UWB/INS navigation methods, respectively. Furthermore, as shown by the error-variation curves, the main performance of the proposed fusion-filtering method was largely influenced by the accuracy and robustness of the sensors in the kinematic ESKF. Furthermore, the algorithm proposed in this paper demonstrated good generalizability, plug-and-play, and robustness through comparative analysis experiments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. Summary and Prospect of Indoor High-Precision Positioning Technology;Liu;Geomat. Inf. Sci. Wuhan Univ.,2022

2. IoT-Enabled Autonomous System Collaboration for Disaster-Area Management;Girma;IEEE CAA J. Autom. Sin.,2020

3. Dinelli, C., Racette, J., Escarcega, M., Lotero, S., Gordon, J., Montoya, J., Dunaway, C., Androulakis, V., Khaniani, H., and Shao, S. (2023). Configurations and Applications of Multi-Agent Hybrid Drone/Unmanned Ground Vehicle for Underground Environments: A Review. Drones, 7.

4. Overview of the application of neural networks in the motion control of unmanned vehicles;Zhang;Chin. J. Eng.,2022

5. Path Processing Method for Wheeled Mobile Robots Based on Rearrangement and Optimization;Qi;Robot,2023

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3