GNSS-Assisted Visual Dynamic Localization Method in Unknown Environments

Author:

Dai Jun123,Zhang Chunfeng13,Liu Songlin2,Hao Xiangyang2,Ren Zongbin2ORCID,Lv Yunzhu2

Affiliation:

1. School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450001, China

2. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China

3. Henan General Aviation Engineering Technology Research Centre, Zhengzhou 450001, China

Abstract

Autonomous navigation and localization are the foundations of unmanned intelligent systems, therefore, continuous, stable, and reliable position services in unknown environments are especially important for autonomous navigation and localization. Aiming at the problem where GNSS cannot continuously localize in complex environments due to weak signals, poor penetration ability, and susceptibility to interference and that visual navigation and localization are only relative, this paper proposes a GNSS-aided visual dynamic localization method that can provide global localization services in unknown environments. Taking the three frames of images and their corresponding GNSS coordinates as the constraint data, the GNSS coordinate system and world coordinate system transformation matrix are obtained through horn coordinate transformation, and the relative positions of the subsequent image sequences in the world coordinate system are obtained through epipolar geometry constraints, homography matrix transformations, and 2D–3D position and orientation solving, which ultimately yields the global position data of unmanned carriers in GNSS coordinate systems when GNSS is temporarily unavailable. Both the dataset validation and measured data validation showed that the GNSS initial-assisted positioning algorithm could be applied to situations where intermittent GNSS signals exist, and it can provide global positioning coordinates with high positioning accuracy in a short period of time; however, the algorithm would drift when used for a long period of time. We further compared the errors of the GNSS initial-assisted positioning and GNSS continuous-assisted positioning systems, and the results showed that the accuracy of the GNSS continuous-assisted positioning system was two to three times better than that of the GNSS initial-assisted positioning system, which proved that the GNSS continuous-assisted positioning algorithm could maintain positioning accuracy for a long time and it had good reliability and applicability in unknown environments.

Funder

Scientific Research Team Plan of the Zhengzhou University of Aeronautics

Science and Technology Department of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3