Energy-Efficient 3D Path Planning for Complex Field Scenes Using the Digital Model with Landcover and Terrain

Author:

Ma Baodong1,Liu Quan1,Jiang Ziwei1,Che Defu1,Qiu Kehan1,Shang Xiangxiang1

Affiliation:

1. Institute for Geoinformatics & Digital Mine Research, Northeastern University, Shenyang 110819, China

Abstract

Path planning is widely used in many domains, and it is crucial for the advancement of map navigation, autonomous driving, and robot path planning. However, existing path planning methods have certain limitations for complex field scenes with undulating terrain and diverse landcover types. This paper presents an energy-efficient 3D path planning algorithm based on an improved A* algorithm and the particle swarm algorithm in complex field scenes. The evaluation function of the A* algorithm was improved to be suitable for complex field scenes. The slope parameter and friction coefficient were respectively used in the evaluation function to represent different terrain features and landcover types. The selection of expanding nodes in the algorithm depends not only on the minimum distance but also on the minimum consumption cost. Furthermore, the turning radius factor and slope threshold factor of vehicles were added to the definition of impassable points in the improved A* algorithm, so that the accessibility of path planning could be guaranteed by excluding some bends and steep slopes. To meet the requirements for multi-target path planning, the improved A* algorithm was used as the fitness function of the particle swarm algorithm to solve the traveling salesman problem. The experimental results showed that the proposed algorithm is capable of multi-target path planning in complex field scenes. Furthermore, the path planned by this algorithm is more passable and more energy efficient. In this experimental environment model, the average energy-saving efficiency of the path planned by the improved algorithm is 14.7% compared to the traditional A* algorithm. This would be beneficial to the development of ecotourism and geological exploration.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A passage time–cost optimal A* algorithm for cross-country path planning;International Journal of Applied Earth Observation and Geoinformation;2024-06

2. Two-Stage Path Planning for Long-Distance Off-Road Path Planning Based on Terrain Data;ISPRS International Journal of Geo-Information;2024-05-31

3. UAV 3D Path Planning based on Ant Colony Algorithm;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

4. Deep Reinforcement Learning-Based 2.5D Multi-Objective Path Planning for Ground Vehicles: Considering Distance and Energy Consumption;Electronics;2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3