Affiliation:
1. Institute for Geoinformatics & Digital Mine Research, Northeastern University, Shenyang 110819, China
Abstract
Path planning is widely used in many domains, and it is crucial for the advancement of map navigation, autonomous driving, and robot path planning. However, existing path planning methods have certain limitations for complex field scenes with undulating terrain and diverse landcover types. This paper presents an energy-efficient 3D path planning algorithm based on an improved A* algorithm and the particle swarm algorithm in complex field scenes. The evaluation function of the A* algorithm was improved to be suitable for complex field scenes. The slope parameter and friction coefficient were respectively used in the evaluation function to represent different terrain features and landcover types. The selection of expanding nodes in the algorithm depends not only on the minimum distance but also on the minimum consumption cost. Furthermore, the turning radius factor and slope threshold factor of vehicles were added to the definition of impassable points in the improved A* algorithm, so that the accessibility of path planning could be guaranteed by excluding some bends and steep slopes. To meet the requirements for multi-target path planning, the improved A* algorithm was used as the fitness function of the particle swarm algorithm to solve the traveling salesman problem. The experimental results showed that the proposed algorithm is capable of multi-target path planning in complex field scenes. Furthermore, the path planned by this algorithm is more passable and more energy efficient. In this experimental environment model, the average energy-saving efficiency of the path planned by the improved algorithm is 14.7% compared to the traditional A* algorithm. This would be beneficial to the development of ecotourism and geological exploration.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献