Deep Reinforcement Learning-Based 2.5D Multi-Objective Path Planning for Ground Vehicles: Considering Distance and Energy Consumption

Author:

Wu Xiru1,Huang Shuqiao1,Huang Guoming1

Affiliation:

1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Due to the vastly different energy consumption between up-slope and down-slope, a path with the shortest length in a complex off-road terrain environment (2.5D map) is not always the path with the least energy consumption. For any energy-sensitive vehicle, realizing a good trade-off between distance and energy consumption in 2.5D path planning is significantly meaningful. In this paper, we propose a deep reinforcement learning-based 2.5D multi-objective path planning method (DMOP). The DMOP can efficiently find the desired path in three steps: (1) transform the high-resolution 2.5D map into a small-size map, (2) use a trained deep Q network (DQN) to find the desired path on the small-size map, and (3) build the planned path to the original high-resolution map using a path-enhanced method. In addition, the hybrid exploration strategy and reward-shaping theory are applied to train the DQN. The reward function is constructed with the information of terrain, distance, and border. The simulation results show that the proposed method can finish the multi-objective 2.5D path planning task with significantly high efficiency and quality. Also, simulations prove that the method has powerful reasoning capability that enables it to perform arbitrary untrained planning tasks.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Key Laboratory of AI and Information Processing (Hechi University), the Education Department of Guangxi Zhuang Autonomous Region

Innovation Project of Guangxi Graduate Education

Innovation Project of GUET Graduate Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3