Molecular Characterization and Bioactivities of a Novel Polysaccharide from Phyllostachys pracecox Bamboo Shoot Residues

Author:

Huang Xubo1,Zhang Yalan2,Xie Na1,Cheng Junwen1,Wang Yanbin1,Yuan Shaofei3,Li Qin3,Shi Rui2,He Liang1,Chen Min4

Affiliation:

1. The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China

2. Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China

3. Bamboo Shoots Engineering Research Center of the State Forestry Bureau, Department of Bamboo, Zhejiang Academy of Forestry, Hangzhou 310023, China

4. Zhejiang Longyou International Trade Bamboo Shoots Co., Ltd., Quzhou 324400, China

Abstract

Dietary carbohydrates are unexploited in the by-products of economically valuable Phyllostachys pracecox bamboo shoots. A residue-derived polysaccharide (PBSR1) was aqueously extracted from the processing waste of this bamboo shoot species. Its primary structure and advanced conformation were elucidated by a combined analysis of spectroscopy, chromatography, 2D nuclear magnetic resonance, laser light scattering and atomic microscopy. The results indicated PBSR1 was a triple-helix galactan consisting of →6)-β-D-Galp and →3)-β-D-Galp in linear with an 863 KD molecular weight (Mw). The relationship between the radius of gyration (Rg) and intrinsic viscosity ([η]) on Mw were established as Rg = 1.95 × 10−2Mw0.52±0.03 (nm) and [η] = 9.04 × 10−1Mw0.56±0.02 (mL/g) for PBSR1 in saline solution at 25 °C, which indicated it adopted a triple-helix chain shape with a height of 1.60 ± 0.12 nm supported by a red shift of λmax in Congo red analysis. The thermodynamic test (TG) displayed that it had excellent thermal stability for the food industry. Further, those unique structure features furnish PBSR1 on antioxidation with EC50 of 0.65 mg/mL on DPPH· and an ORAC value of 329.46 ± 12.1 μmol TE/g. It also possessed pronounced immunostimulation by up-regulating pro-inflammatory signals including NO, IL-6, TNF-α and IL-1β in murine cells. Our studies provided substantial data for the high-valued application of residues and a better understanding of the structure–function relationship of polysaccharide.

Funder

Key Laboratory of Biochemical Utilization of Zhejiang Province

Project of Science and Technology of Zhejiang Government, China

National Natural Science Foundation of China

project of Zhejiang Provincial and Academy Corporation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3