APSO-MPC and NTSMC Cascade Control of Fully-Actuated Autonomous Underwater Vehicle Trajectory Tracking Based on RBF-NN Compensator

Author:

Bao HanORCID,Zhu HaitaoORCID,Li XinfeiORCID,Liu JingORCID

Abstract

In this paper, a model predictive control (MPC) method optimized by an adaptive particle swarm optimization (APSO) algorithm is proposed. Combined with non-singular terminal sliding mode control (NTSMC), the inner and outer double-closed-loop control system is constructed to solve the fully actuated autonomous underwater vehicle (AUV) dynamic trajectory tracking control problem. First, the outer loop controller generates the expected optimal velocity commands and passes them to the inner loop velocity controller, which generates the available control inputs to ensure the entire closed-loop trajectory tracking. In the controller design stage, system input and state constraints are effectively considered. After that, a compensator based on an adaptive radial basis function (RBF) neural network (NN) is designed to compensate for the model error and external sea state disturbances and to improve the control accuracy of the system. Then, the stability of the proposed controller is proved based on Lyapunov analysis. Finally, the dynamic trajectory tracking performance of an AUV with different sea state disturbances is verified by simulation, and the simulation results are compared with double-closed-loop PD control and cascade control of standard MPC based on PSO and SMC. The results show that the designed controller is effective and robust.

Funder

China Scholarship Council

the university–local integration category project “Underwater Vehicles Key Technology R&D Center”

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3