Enhancing Underwater Robot Manipulators with a Hybrid Sliding Mode Controller and Neural-Fuzzy Algorithm

Author:

Pham Duc-Anh1ORCID,Han Seung-Hun1

Affiliation:

1. Department of Mechanical System Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea

Abstract

The sliding mode controller stands out for its exceptional stability, even when the system experiences noise or undergoes time-varying parameter changes. However, designing a sliding mode controller necessitates precise knowledge of the object’s exact model, which is often unattainable in practical scenarios. Furthermore, if the sliding control law’s amplitude becomes excessive, it can lead to undesirable chattering phenomena near the sliding surface. This article presents a new method that uses a special kind of computer program (Radial Basis Function Neural Network) to quickly calculate complex relationships in a robot’s control system. This calculation is combined with a technique called Sliding Mode Control, and Fuzzy Logic is used to measure the size of the control action, all while making sure the system stays stable using Lyapunov stability theory. We tested this new method on a robot arm that can move in three different ways at the same time, showing that it can handle complex, multiple-input, multiple-output systems. In addition, applying LPV combined with Kalman helps reduce noise and the system operates more stably. The manipulator’s response under this controller exhibits controlled overshoot (Rad), with a rise time of approximately 5 ± 3% seconds and a settling error of around 1%. These control results are rigorously validated through simulations conducted using MATLAB/Simulink software version 2022b. This research contributes to the advancement of control strategies for robotic manipulators, offering improved stability and adaptability in scenarios where precise system modeling is challenging.

Funder

Gyeongsang National University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3