Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine

Author:

Luo JunqiORCID,Zhu LiucunORCID,Wu NingORCID,Chen Mingyou,Liu Daopeng,Zhang Zhenyu,Liu Jiyuan

Abstract

The vision-guided robot is intensively embedded in modern industry, but it is still a challenge to track moving objects in real time accurately. In this paper, a hybrid adaptive control scheme combined with an Extreme Learning Machine (ELM) and proportional–integral–derivative (PID) is proposed for dynamic visual tracking of the manipulator. The scheme extracts line features on the image plane based on a laser-camera system and determines an optimal control input to guide the robot, so that the image features are aligned with their desired positions. The observation and state–space equations are first determined by analyzing the motion features of the camera and the object. The system is then represented as an autoregressive moving average with extra input (ARMAX) and a valid estimation model. The adaptive predictor estimates online the relevant 3D parameters between the camera and the object, which are subsequently used to calculate the system sensitivity of the neural network. The ELM–PID controller is designed for adaptive adjustment of control parameters, and the scheme was validated on a physical robot platform. The experimental results showed that the proposed method’s vision-tracking control displayed superior performance to pure P and PID controllers.

Funder

Special Fund for Bagui Scholars of the Guangxi Zhuang Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3