Improved SSA‐RBF neural network‐based dynamic 3‐D trajectory tracking model predictive control of autonomous underwater vehicles with external disturbances

Author:

Bao Han12ORCID,Zhu Haitao23ORCID,Liu Di12ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering Harbin Engineering University Harbin China

2. Yantai Research Institute and Graduate School Harbin Engineering University Yantai China

3. College of Shipbuilding Engineering Harbin Engineering University Harbin China

Abstract

AbstractThis paper studies the three‐dimensional (3‐D) dynamic trajectory tracking control of an autonomous underwater vehicle (AUV). As AUV is a typical nonlinear system, each degree of freedom is strongly coupled, so the traditional control method based on the nominal model of AUV cannot guarantee the accuracy of the control system. To solve this problem, we first propose a prediction model based on a radial basis function neural network (RBF‐NN). The nonlinearity of AUV is learned and modeled offline by RBF‐NN based on previous data. This model can reflect the time sequence state and control variables of AUV. Secondly, to avoid the overfitting problem in network training based on the traditional gradient descent method, a new adaptive chaotic sparrow search algorithm (ACSSA) is proposed to optimize the network parameters, to improve the full approximation ability of RBF‐NN to nonlinear systems. To eliminate the steady‐state error caused by external interference during AUV trajectory tracking, a nonlinear optimizer is designed by updating the deviation of the NN model output layer. In each sampling period, the predictive control law is calculated online according to the deviation between the predicted value and the actual value. In addition, the stability analysis based on the Lyapunov method proves the asymptotic stability of the controller. Finally, the 3‐D dynamic trajectory tracking the performance of AUV under different external disturbances is verified by MATLAB/Simulink, and the results show that the proposed controller is more efficient and robust than the standard model predictive controller (MPC) controller and the standard NN model predictive controller (NNPC).

Funder

China Scholarship Council

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3