Robust Fixed-Time Fault-Tolerant Control for USV with Prescribed Tracking Performance

Author:

Li Zifu1,Lei Kai1

Affiliation:

1. Navigation College, Jimei University, Xiamen 361021, China

Abstract

The unmanned surface vessel (USV) is an emerging marine tool with its advantages of automation and intelligence in recent years; the good trajectory tracking performance is an important capability. This paper proposes a novel prescribed performance fixed-time fault-tolerant control scheme for an USV with model parameter uncertainties, unknown external disturbances, and actuator faults, based on an improved fixed-time disturbances observer. Firstly, the proposed observer can not only accurately and quickly estimate and compensate the lumped nonlinearity, including actuator faults, but also reduce the chattering phenomenon by introducing the hyperbolic tangent function. Then, under the framework of prescribed performance control, a prescribed performance fault-tolerant controller is designed based on a nonsingular fixed-time sliding mode surface, which guarantees the transient and steady-state performance of an USV under actuator faults and meets the prescribed tracking performance requirements. In addition, it is proved that the closed-loop control system has fixed-time stability according to Lyapunov’s theory. Finally, upon conducting numerical simulations and comparing the proposed control scheme with the SMC and the finite-time NFTSMC scheme, it is evident that the absolute error tracking performance index of the proposed control scheme is significantly lower, thus indicating its superior accuracy.

Funder

National Natural Science Foundation of China

Key Projects of National Key R&D Program

Natural Science Project of Fujian Province

Fuzhou-Xiamen-Quanzhou Independent Innovation Region Cooperated Special Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Ships and Waterways: Design, Operation and Advanced Technology;Journal of Marine Science and Engineering;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3