Abstract
In this study, the physicochemical properties, pharmacokinetics properties, and drug-likeness of pigments from Monascus-fermented rice (Monascus pigments, MPs) were predicted in silico using SwissADME tool. In silico prediction of physicochemical properties showed that MPs had desirable lipophilic drug-like physicochemical properties including molecular weight (236 to 543), TPSA (44.76 to 179.77), lipophilicity (−0.81 to 4.14), and water solubility (−4.94 to −0.77). The pharmacokinetic properties of MPs (i.e., GIA, P-glycoprotein substrate, and CYP3A4 inhibitor) illustrated that most MPs had high intestinal absorption and bioavailability, but some MPs might cause pharmacokinetics-related drug–drug interactions. Following this, six main well-known MPs (monascin, ankaflavin, rubropunctatin, monascorubrin, rubropunctamine, monascorubramine) were selected for molecular docking with some enzyme receptors. The docking results were shown with the best molecular docking poses, and the interacting residues, number and distance of hydrogen bonds of the MPs and monacolin K (for docking with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA reductase)), or MPs and oleic acid (for docking with lipase). Dissociation constants showed that MPs had lower inhibitory potential for HMGR (compared with Monacolin K), and higher inhibitory potential for lipase. Individual pigments from Monascus-fermented rice, therefore, have the potential to be developed as drug candidates for controlling hyperlipidemia.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science