Regulation of the pigment production by changing Cell morphology and gene expression of Monascus ruber in high-sugar synergistic high-salt stress fermentation

Author:

Chen Gong1,Zhao Wenqian1,Zhao Lu1,Song Da2,Chen Ben3,Zhao Xihong1,Hu Ting1

Affiliation:

1. Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology , Wuhan 430205 , PR China

2. Institute of Microbiology, Guangdong Academy of Science , Guangzhou 510006 , PR China

3. School of Environmental Science and Engineering, Sun Yat-sen University , Guangzhou 510006 , PR China

Abstract

Abstract Aims Extreme environment of microbial fermentation is the focus of research, which provides new thinking for the production and application of Monascus pigments (MPs). In this work, the high-sugar synergistic high-salt stress fermentation (HSSF) of MPs was investigated. Methods and results The Monascus fungus grew well under HSSF conditions with 35 g L−1 NaCl and 150 g L−1 glucose, and the extracellular yellow pigment and intracellular orange pigment yield in HSSF was 98% and 43% higher than that in conventional fermentation, respectively. Moreover, the mycelial morphology was maintained in a better status with more branches and complete surface structure, indicating good biocatalytic activity for pigment synthesis. Four extracellular yellow pigments (Y1, Y2, Y3, and Y4) were transformed into each other, and ratio of the relative content of intracellular orange pigments to yellow pigments (O/Y) significantly (P < 0.05) changed. Moreover, the ratio of unsaturated fatty acids to saturated fatty acids (unsaturated/saturated) was significantly (P < 0.05) increased, indicating that the metabolism and secretion of intracellular and extracellular pigment might be regulated in HSSF. The pigment biosynthesis genes mppB, mppC, mppD, MpPKS5, and MpFasB2 were up-regulated, whereas the genes mppR1, mppR2, and mppE were down-regulated, suggesting that the gene expression to regulate pigment biosynthesis might be a dynamic change process in HSSF. Conclusions The HSSF system of MPs is successfully performed to improve the pigment yields. Mycelial morphology is varied to enhanced pigment secretion, and gene expression is dynamically regulated to promote pigment accumulation in HSSF.

Funder

National Natural Science Foundation of China

Scientific Research Project of Hubei Provincial Department of Education, China

Knowledge Innovation Project of Wuhan Science and Technology Bureau, China

Science Foundation Project of Wuhan Institute of Technology, China

Graduate Innovative Fund of Wuhan Institute of Technology, China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3