Defect Detection in Food Using Multispectral and High-Definition Imaging Combined with a Newly Developed Deep Learning Model

Author:

Deng Dongping12ORCID,Liu Zhijiang3,Lv Pin12ORCID,Sheng Min3,Zhang Huihua3,Yang Ruilong4,Shi Tiezhu12

Affiliation:

1. State Key Laboratory of Subtropical Building and Urban Science & Guangdong–Hong Kong-Macau Joint Laboratory for Smart Cities, Shenzhen University, Shenzhen 518060, China

2. School of Architecture & Urban Planning, Shenzhen University, Shenzhen 518060, China

3. Wuhan Maritime Communication Research Institute (WMCRI), Wuhan 430000, China

4. Beijing LUSTER LightTech Group Co., Ltd., Beijing 100089, China

Abstract

The automatic detection of defects (cortical fibers) in pickled mustard tubers (Chinese Zhacai) remains a challenge. Moreover, few papers have discussed detection based on the segmentation of the physical characteristics of this food. In this study, we designate cortical fibers in pickled mustard as the target class, while considering the background and the edible portion of pickled mustard as other classes. We attempt to realize an automatic defect-detection system to accurately and rapidly detect cortical fibers in pickled mustard based on multiple images combined with a UNet4+ segmentation model. A multispectral sensor (MS) covering nine wavebands with a resolution of 870 × 750 pixels and an imaging speed over two frames per second and a high-definition (HD), 4096 × 3000 pixel resolution imaging system were applied to obtain MS and HD images of 200 pickled mustard tuber samples. An improved imaging fusion method was applied to fuse the MS with HD images. After image fusion and other preprocessing methods, each image contained a target; 150 images were randomly selected as the training data and 50 images as the test data. Furthermore, a segmentation model called UNet4+ was developed to detect the cortical fibers in the pickled mustard tubers. Finally, the UNet4+ model was tested on three types of datasets (MS, HD, and fusion images), and the detection results were compared based on Recall, Precision, and Dice values. Our study indicates that the model can successfully detect cortical fibers within about a 30 ± 3 ms timeframe for each type of image. Among the three types of images, the fusion images achieved the highest mean average Dice value of 73.91% for the cortical fibers. At the same time, we compared the UNet4+ model with the UNet++ and UNet3+ models using the same fusion data; the results show that our model achieved better prediction performance for the Dice values, i.e., 9.72% and 27.41% higher than those of the UNet++ and UNet3+ models, respectively.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3