Nondestructive Technique for Identifying Adulteration and Additives in Lemon Juice Based on Analyzing Volatile Organic Compounds (VOCs)

Author:

Mohammadian Nasim1,Ziaiifar Aman Mohammad1ORCID,Mirzaee-Ghaleh Esmaeil2ORCID,Kashaninejad Mahdi1,Karami Hamed3ORCID

Affiliation:

1. Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran

2. Department of Mechanical Engineering of Biosystems, Razi University, Kermanshah 6715685421, Iran

3. Department of Petroleum Engineering, Knowledge University, Erbil 44001, Iraq

Abstract

In light of the frequent occurrence of counterfeit food sold in global commercial markets, it is necessary to verify the authenticity of tasty natural-plant-based products by checking their labels, as well as their pricing and quality control. Lemon juice has repeatedly been the victim of fraud attempts by manufacturers to lower the price of products. Electronic noses are used in many fields, including the beverage industry, for classification and quality control. This involves the detection and differentiation of volatile organic compounds (VOCs) released from food. This study evaluated pure lemon juice and 11 counterfeit samples (water, lemon pulp, and wheat straw) using an electronic nose equipped with 8 metal oxide sensors to detect fraud. Chemometric methods such as principal component analysis (PCA), linear and quadratic analysis (LDA), support vector machines (SVMs), and artificial neural networks (ANNs) were used to analyze the response patterns of the sensors. The outputs of eight sensors were considered as the input of the model and the number of lemon juice groups, and its adulterations were also considered as the output of the model. Of the total data, 60% (for training), 20% (for validation), and 20% (for testing) were used. According to the results, all models had an accuracy of more than 95%, and the Nu-SVM linear function method had the highest accuracy among all models. Hence, it can be concluded that the electronic nose based on metal oxide semiconductor sensors combined with chemometric methods can be an effective tool with high efficiency for rapid and nondestructive classification of pure lemon juice and its counterfeits.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3