Highly Informative Fingerprinting of Extra-Virgin Olive Oil Volatiles: The Role of High Concentration-Capacity Sampling in Combination with Comprehensive Two-Dimensional Gas Chromatography

Author:

Stilo Federico,Cordero ChiaraORCID,Sgorbini BarbaraORCID,Bicchi Carlo,Liberto EricaORCID

Abstract

The study explores the complex volatile fraction of extra-virgin olive oil by combining high concentration-capacity headspace approaches with comprehensive two-dimensional gas chromatography, which is coupled with time of flight mass spectrometry. The static headspace techniques in this study are: (a) Solid-phase microextraction, with multi-polymer coating (SPME- Divinylbenzene/Carboxen/Polydimethylsiloxane), which is taken as the reference technique; (b) headspace sorptive extraction (HSSE) with either a single-material coating (polydimethylsiloxane—PDMS) or a dual-phase coating that combines PDMS/Carbopack and PDMS/EG (ethyleneglycol); (c) monolithic material sorptive extraction (MMSE), using octa-decyl silica combined with graphite carbon (ODS/CB); and dynamic headspace (d) with either PDMS foam, operating in partition mode, or Tenax TA™, operating in adsorption mode. The coverage of both targeted and untargeted 2D-peak-region features, which corresponds to detectable analytes, was examined, while concentration factors (CF) for a selection of informative analytes, including key-odorants and off-odors, and homolog-series relative ratios were calculated and the information capacity was discussed. The results highlighted the differences in concentration capacities, which were mainly caused by polymer-accumulation characteristics (sorptive/adsorptive materials) and its amount. The relative concentration capacity for homologues and potent odorants was also discussed, while headspace linearity and the relative distribution of analytes, as a function of different sampling amounts, was examined. This last point is of particular interest in quantitative studies where accurate data is needed to derive consistent conclusions.

Funder

Ager Fondazioni in Rete per la Ricerca Agroalimentare

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3