Abstract
Rosemary (Rosmarinus officinalis L.) is a plant with needle-shaped leaves. It is mainly found in Mediterranean regions (Algeria, Morocco and Tunisia). Rosemary essential oil (EO) has several therapeutic virtues that were widely studied. However, the use of this EO is restricted due to its sensitivity to oxidation. Nanoencapsulation based on EO and polymers has been developed as one of the promising techniques to overcome this limitation. In this study, the emphasis was on optimizing the extraction and formulation of a food additive based on rosemary EO. In fact, the results showed that rosemary EO extraction depended on the parameters of the extraction process, and the optimum heating temperature and extraction time were determined using an experimental design methodology. The parameters for extraction were chosen as follows: heating temperature of 250 °C and a hydrodistillation time of 180 min. This optimization revealed that the maximum oil yield can be obtained. Rosemary EO was characterized by a dominance of 1,8-cineole, camphor, α-pinene, borneol and camphene as well as by high antioxidant and antibacterial capacities with low acute toxicity. The obtained formulation of a stable rosemary EO powder can be used as a food additive in several industrial applications.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development