Model Predictive Control Based on State Space and Risk Augmentation for Unmanned Surface Vessel Trajectory Tracking

Author:

Li Wei1,Zhang Jun2,Wang Fang13,Zhou Hanyun4

Affiliation:

1. College of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China

2. School of Electrical Information Engineering, Jiangsu University, Zhenjiang 212013, China

3. Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin 150001, China

4. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

The underactuated unmanned surface vessel (USV) has been identified as a promising solution for future maritime transport. However, the challenges of precise trajectory tracking and obstacle avoidance remain unresolved for USVs. To this end, this paper models the problem of path tracking through the first-order Nomoto model in the Serret–Frenet coordinate system. A novel risk model has been developed to depict the association between USVs and obstacles based on SFC. Combined with an artificial potential field that accounts for environmental obstacles, model predictive control (MPC) based on state space is employed to achieve the optimal control sequence. The stability of the designed controller is demonstrated by means of the Lyapunov method and zero-pole analysis. Through simulation, it has been demonstrated that the controller is asymptotically stable concerning track error deviation, heading angle deviation, and heading angle speed, and its good stability and robustness in the presence of multiple risks are verified.

Funder

National Science Fund for Young Scholars of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3