State-Transform MPC-SMC-Based Trajectory Tracking Control of Cross-Rudder AUV Carrying Out Underwater Searching Tasks

Author:

Hong Haochen1,Yang Zhiqiang1,Li Jiawei2ORCID,Xu Guohua1,Xia Yingkai2ORCID,Xu Kan3

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

3. Wuhan Second Ship Design and Research Institute, Wuhan 430025, China

Abstract

In this study, we present a novel dual-loop robust trajectory tracking framework for autonomous underwater vehicles, with the objective of enhancing their performance in underwater searching tasks amidst oceanic disturbances. Initially, a real-world AUV experiment is conducted to validate the efficacy of a cross-rudder AUV configuration in maintaining sailing angle stability during the diving stage, which exhibits a strong capability for straight-line sailing. Building upon the experimental findings, we introduce a state-transform-model predictive guide law to compute the desired velocity for the dynamics loop. This guide law dynamically adjusts the controller across varying depths, thereby reducing model predictive control (MPC) computation while optimizing timing without compromising precision or convergence speed. Subsequently, we incorporate a sliding mode controller with a prescribed disturbance observer into the velocity control loop to concurrently enhance the robustness and convergence rate of the system. This innovative amalgamation of controllers significantly improves tracking precision and convergence rate, while also alleviating the computational burden—a pervasive challenge in AUV MPC control. Finally, various condition simulations are conducted to validate the robustness, effectiveness, and superiority of the proposed method. These simulations underscore the enhanced performance and reliability of our proposed trajectory tracking framework, highlighting its potential utility in real-world AUV applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3