A Formation Control and Obstacle Avoidance Method for Multiple Unmanned Surface Vehicles

Author:

Liu Guanqun1ORCID,Wen Naifeng1,Long Feifei1,Zhang Rubo1

Affiliation:

1. College of Mechanical and Electrical Engineering, Dalian Minzu University, Dalian 116600, China

Abstract

This study introduces a method for formation control and obstacle avoidance for multiple unmanned surface vehicles (USVs) by combining an artificial potential field with the virtual structure method. The approach involves a leader–follower formation structure, where the leader autonomously avoids collisions using an artificial potential field based on the target’s position as a reference. It also determines the ideal position of each follower in the formation based on its own position, heading angle, and the formation structure. To effectively avoid obstacles and maintain formation, the follower selects the position of the target or its ideal position as a reference during movement, depending on whether it is being repelled by obstacles. Additionally, this paper modifies the attractive force model of the traditional artificial potential field method to restrict the maximum magnitude of the attractive force when encountering repulsive forces, thus expediting departure from obstacle areas. The dynamic characteristics of USVs are taken into account by constraining the maximum linear speed and angular speed. Formation stability is ensured by maintaining a constant speed for the leader, while the linear speed of the follower varies based on the distance to the reference object during movement. Simulation experiments demonstrated that this method can effectively avoid obstacles and maintain formation.

Funder

Basic Research Projects for Universities of Educational Department of Liaoning Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3