An Overview of Carbon Emission Mitigation in the Food Industry: Efforts, Challenges, and Opportunities

Author:

Liu Ting-Chun1,Wu Yi-Ching1,Chau Chi-Fai1ORCID

Affiliation:

1. Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, South District, Taichung 40227, Taiwan

Abstract

The food system plays a significant role in anthropogenic greenhouse gas (GHG) emissions, contributing to over one-third of these emissions. However, there has been limited attention given in the literature on how the food industry can effectively address the carbon issue. This review aims to bridge this research gap through providing a comprehensive overview of anthropogenic GHG emissions and exploring the role of carbon markets in mitigating climate change, with a specific emphasis on the food industry. It delves into the introduction of emission hotspots within the food industry, examines ongoing efforts in GHG emissions mitigation, and addresses the challenges associated with GHG verification and offsetting. Notably, emission hotspots are primarily found in the farm, manufacturing, and post-production stages of the food industry. The emissions from the farm stage, which are often overlooked, make a significant contribution to overall emissions. Carbon verification encounters limitations due to a lack of standardized methodologies, inaccurate data, and insufficient reporting of emissions. Currently, achieving carbon neutrality without relying on carbon offsets presents a significant challenge for the entire food industry. Comprehensive mitigation strategies and collaboration across agricultural producers and the food manufacturing industry are considered potential solutions to achieve genuine sustainability.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference109 articles.

1. The status of corporate greenhouse gas emissions reporting in the food sector: An evaluation of food and beverage manufacturers;Hansen;J. Clean. Prod.,2022

2. Food systems are responsible for a third of global anthropogenic GHG emissions;Crippa;Nat. Food,2021

3. Evaluating Greenhouse Gas Emissions and Climate Mitigation Goals of the Global Food and Beverage Sector;Reavis;Front. Sustain. Food Syst.,2022

4. (2023, June 22). COP26: Participants Recognise Need for Sustainable Food Systems to Ensure Global Food Security and Achieve Climate Objectives. Available online: https://agriculture.ec.europa.eu/news/cop26-participants-recognise-need-sustainable-food-systems-ensure-global-food-security-and-achieve-2021-11-09_en.

5. A comparative analysis of several vehicle emission models for road freight transportation;Demir;Transp. Res. Part D Transp. Environ.,2011

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3