Numerical Simulation and Development of a Continuous Microwave-Assisted Pilot Plant for Shelled Almond Processing

Author:

Mescia Luciano1ORCID,Leone Alessandro2ORCID,Lamacchia Claudio Maria3,Ferraris Angela3,Caggiano Domenico3,Berardi Antonio2ORCID,Tamborrino Antonia2ORCID

Affiliation:

1. Department of Electrical and Information Engineering (DEI), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

2. Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy

3. IAMAtek srl, Via Nicholas Green 13/A, Bari S. Spirito, 70127 Bari, Italy

Abstract

This paper outlines the numerical modeling procedure aimed at defining the guidelines for the development of a continuous microwave-assisted pilot plant for shelled almond disinfestation, as an alternative to the use of chemicals. To this end, a 3D Multiphysics numerical tool involving both electromagnetic and thermal models was developed to predict the temperature and electric field profiles inside the microwave treatment chamber. Three different microwave sources arrangements were simulated and the accuracy of the model was verified under different residence times of almonds in the treatment chamber using the developed prototype. The modeling results demonstrated that the arrangement having five microwave sources, each delivering a maximum power of 1.5 kW and frequency of 2.45 GHz, ensures good heating uniformity. The obtained results proved that the model enables the accurate prediction of the temperature trend (root-mean-square error/RMSE = 0.82). A strong linear regression was detected for the standard deviation between the simulated and experimental data (linear regression, R2 = 0.91). The very low COV value for the experimental temperature data demonstrated the heating uniformity as the treatment time changed. The developed model and the simulation strategy used may provide useful design guidance for microwave-assisted continuous plants for disinfestation, with a significant impact on the almond industry.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3