Extruder Machine Gear Fault Detection Using Autoencoder LSTM via Sensor Fusion Approach

Author:

Lee Joon-Hyuk1,Okwuosa Chibuzo Nwabufo1ORCID,Hur Jang-Wook1

Affiliation:

1. Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Gyeonsang-buk-do, Republic of Korea

Abstract

In industrial settings, gears play a crucial role by assisting various machinery functions such as speed control, torque manipulation, and altering motion direction. The malfunction or failure of these gear components can have serious repercussions, resulting in production halts and financial losses. To address this need, research efforts have focused on early defect detection in gears in order to reduce the impact of possible failures. This study focused on analyzing vibration and thermal datasets from two extruder machine gearboxes using an autoencoder Long Short-Term Memory (AE-LSTM) model, to ensure that all important characteristics of the system are utilized. Fast independent component analysis (FastICA) is employed to fuse the data signals from both sensors while retaining their characteristics. The major goal is to implement an outlier detection approach to detect and classify defects. The results of this study highlighted the extraordinary performance of the AE-LSTM model, which achieved an impressive accuracy rate of 94.42% in recognizing malfunctioning gearboxes within the extruder machine system. The study used robust global metric evaluation techniques, such as accuracy, F1-score, and confusion metrics, to thoroughly evaluate the model’s dependability and efficiency. LSTM was additionally employed for anomaly detection to further emphasize the adaptability and interoperability of the methodology. This modification yielded a remarkable accuracy of 89.67%, offering additional validation of the model’s reliability and competence.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3