Abstract
Industry 5.0, also known as the “smart factory”, is an evolution of manufacturing technology that utilizes advanced data analytics and machine learning techniques to optimize production processes. One key aspect of Industry 5.0 is using vibration data to monitor and detect anomalies in machinery and equipment. In the case of a vertical carousel storage and retrieval system (VCSRS), vibration data can be collected and analyzed to identify potential issues with the system’s operation. A correlation coefficient model was used to detect anomalies accurately in the vertical carousel system to ascertain the optimal sensor placement position. This model utilized the Fisher information matrix (FIM) and effective independence (EFI) methods to optimize the sensor placement for maximum accuracy and reliability. An LSTM-autoencoder (long short-term memory) model was used for training and testing further to enhance the accuracy of the anomaly detection process. This machine-learning technique allowed for detecting patterns and trends in the vibration data that may not have been evident using traditional methods. The combination of the correlation coefficient model and the LSTM-autoencoder resulted in an accuracy rate of 97.70% for detecting anomalies in the vertical carousel system.
Funder
the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program
IITP
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献