Hot Strip Mill Gearbox Monitoring and Diagnosis Based on Convolutional Neural Networks Using the Pseudo-Labeling Method

Author:

Seo Myung-Kyo1,Yun Won-Young2

Affiliation:

1. POSCO (Pohang Iron and Steel Co., Ltd.), Pohang 37859, Republic of Korea

2. Department of Industrial Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

The steel industry is typical process manufacturing, and the quality and cost of the products can be improved by efficient operation of equipment. This paper proposes an efficient diagnosis and monitoring method for the gearbox, which is a key piece of mechanical equipment in steel manufacturing. In particular, an equipment maintenance plan for stable operation is essential. Therefore, equipment monitoring and diagnosis to prevent unplanned plant shutdowns are important to operate the equipment efficiently and economically. Most plant data collected on-site have no precise information about equipment malfunctions. Therefore, it is difficult to directly apply supervised learning algorithms to diagnose and monitor the equipment with the operational data collected. The purpose of this paper is to propose a pseudo-label method to enable supervised learning for equipment data without labels. Pseudo-normal (PN) and pseudo-abnormal (PA) vibration datasets are defined and labeled to apply classification analysis algorithms to unlabeled equipment data. To find an anomalous state in the equipment based on vibration data, the initial PN vibration dataset is compared with a PA vibration dataset collected over time, and the equipment is monitored for potential failure. Continuous wavelet transform (CWT) is applied to the vibration signals collected to obtain an image dataset, which is then entered into a convolutional neural network (an image classifier) to determine classification accuracy and detect equipment abnormalities. As a result of Steps 1 to 4, abnormal signals have already been detected in the dataset, and alarms and warnings have already been generated. The classification accuracy was over 0.95 at d=4, confirming quantitatively that the status of the equipment had changed significantly. In this way, a catastrophic failure can be avoided by performing a detailed equipment inspection in advance. Lastly, a catastrophic failure occurred in Step 9, and the classification accuracy ranged from 0.95 to 1.0. It was possible to prevent secondary equipment damage, such as motors connected to gearboxes, by identifying catastrophic failures promptly. This case study shows that the proposed procedure gives good results in detecting operation abnormalities of key unit equipment. In the conclusion, further promising topics are discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3