A Review on Rolling Bearing Fault Signal Detection Methods Based on Different Sensors

Author:

Wu Guoguo,Yan Tanyi,Yang Guolai,Chai Hongqiang,Cao Chuanchuan

Abstract

As a precision mechanical component to reduce friction between components, the rolling bearing is widely used in many fields because of its slight friction loss, strong bearing capacity, high precision, low power consumption, and high mechanical efficiency. This paper reviews several excellent kinds of study and their relevance to the fault detection of rolling bearings. We summarize the fault location, sensor types, bearing fault types, and fault signal analysis of rolling bearings. The fault signal types are divided into one-dimensional and two-dimensional images, which account for 40.14% and 31.69%, respectively, and their classification is clarified and discussed. We counted the proportions of various methods in the references cited in this paper. Among them, the method of one-dimensional signal detection with external sensors accounted for 3.52%, the method of one-dimensional signal detection with internal sensors accounted for 36.62%, and the method of two-dimensional signal detection with external sensors accounted for 19.72%. The method of two-dimensional signal detection with internal sensors accounted for 11.97%. Among these methods, the highest detection rate is 100%, and the lowest detection rate is more than 70%. The similarities between the different methods are compared. The research results summarized in this paper show that with the progress of the times, a variety of new and better research methods have emerged, which have sped up the detection and diagnosis of rolling bearing faults. For example, the technology using artificial intelligence is still developing rapidly, such as artificial neural networks, convolutional neural networks, and machine learning. Although there are still defects, such methods can quickly discover a fault and its cause, enrich the database, and accumulate experience. More and more advanced techniques are applied in this field, and the detection method has better robustness and superiority.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3