Electrical Characteristics and Reliability of Nitrogen-Stuffed Porous Low-k SiOCH/Mn2O3-xN/Cu Integration

Author:

Cheng ,Lin ,Lee ,Chen ,Fang

Abstract

In our previous study, a novel barrier processing on a porous low-dielectric constant (low-k) film was developed: an ultrathin Mn oxide on a nitrogen-stuffed porous carbon-doped organosilica film (p-SiOCH(N)) as a barrier of the Cu film was fabricated. To form a better barrier Mn2O3-xN film, additional annealing at 450 °C was implemented. In this study, the electrical characteristics and reliability of this integrated Cu/Mn2O3-xN/p-SiOCH(N)/Si structure were investigated. The proposed Cu/Mn2O3-xN/p-SiOCH(N)/Si capacitors exhibited poor dielectric breakdown characteristics in the as-fabricated stage, although, less degradation was found after thermal stress. Moreover, its time-dependence-dielectric-breakdown electric-field acceleration factor slightly increased after thermal stress, leading to a larger dielectric lifetime in a low electric-field as compared to other metal-insulator-silicon (MIS) capacitors. Furthermore, its Cu barrier ability under electrical or thermal stress was improved. As a consequence, the proposed Cu/Mn2O3-xN/p-SiCOH(N) scheme is promising integrity for back-end-of-line interconnects.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3