Magneto‐Optical Bi‐Substituted Yttrium and Terbium Iron Garnets for On‐Chip Crystallization via Microheaters

Author:

Hayashi Kensuke1ORCID,Dao Khoi Phuong1ORCID,Gross Miela J.2ORCID,Ranno Luigi1ORCID,Sia Jia Xu Brian13ORCID,Fakhrul Takian14,Du Qingyang5ORCID,Chatterjee Nilanjan6ORCID,Hu Juejun1ORCID,Ross Caroline A.1ORCID

Affiliation:

1. Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

2. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA 02139 USA

3. School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore

4. Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh

5. Research Center for Intelligent Optoelectronic Computing Zhejiang Laboratory Hangzhou Zhejiang 311100 China

6. Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

AbstractFerrimagnetic iron garnets enable magnetic and magneto‐optical functionality in silicon photonics and electronics. However, garnets require high‐temperature processing for crystallization which can degrade other devices on the wafer. Here bismuth‐substituted yttrium and terbium iron garnet (Bi‐YIG and Bi‐TbIG) films are demonstrated with good magneto‐optical performance and perpendicular magnetic anisotropy (PMA) crystallized by a microheater built on a Si chip or by rapid thermal annealing. The Bi‐TbIG film crystallizes on Si at 873 K without a seed layer and exhibits good magneto‐optical properties with Faraday rotation (FR) of −1700 deg cm−1. The Bi‐YIG film also crystallizes on Si and fused SiO2 at 873 K without a seed layer. Rapidly cooled films exhibit PMA due to the tensile stress caused by the thermal expansion mismatch with the substrates, increasing the magnetoelastic anisotropy by 4 kJ m−3 versus slow‐cooled films. Annealing in the air for 15 s using the microheater yields fully crystallized Bi‐TbIG on the Si chip.

Funder

Japan Society for the Promotion of Science

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3