Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study

Author:

Feitosa Bruna de Souza1,Ferreira Oberdan Oliveira2ORCID,Mali Suraj N.3ORCID,Anand Amit3,Cruz Jorddy Nevez1ORCID,Franco Celeste de Jesus Pereira1ORCID,Mahawer Sonu Kumar4ORCID,Kumar Ravendra4ORCID,Cascaes Marcia Moraes5ORCID,Oliveira Mozaniel Santana de67ORCID,Andrade Eloisa Helena de Aguiar12567ORCID

Affiliation:

1. School of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil

2. Graduate Program in Biodiversity and Biotechnology—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil

3. Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, India

4. Department of Chemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, India

5. Graduate Program in Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil

6. Programa de Pós-Graduação em Ciências Biológicas—Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil

7. Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil

Abstract

The essential oils (OEs) of the leaves, stems, and spikes of P. marginatum were obtained by hydrodistillation, steam distillation, and simultaneous extraction. The chemical constituents were identified and quantified by GC/MS and GC-FID. The preliminary biological activity was determined by assessing the toxicity of the samples to Artemia salina Leach larvae and calculating the mortality rate and lethal concentration (LC50). The antioxidant activity of the EOs was determined by the DPPH radical scavenging method. Molecular modeling was performed using molecular docking and molecular dynamics, with acetylcholinesterase being the molecular target. The OES yields ranged from 1.49% to 1.83%. The EOs and aromatic constituents of P. marginatum are characterized by the high contents of (E)-isoosmorhizole (19.4–32.9%), 2-methoxy-4,5-methylenedioxypropiophenone (9.0–19.9%), isoosmorhizole (1.6–24.5%), and 2-methoxy-4,5-methylenedioxypropiophenone isomer (1.6–14.3%). The antioxidant potential was significant in the OE of the leaves and stems of P. marginatum extracted by SD in November (84.9 ± 4.0 mg TE·mL−1) and the OEs of the leaves extracted by HD in March (126.8 ± 12.3 mg TE·mL−1). Regarding the preliminary toxicity, the OEs of Pm-SD-L-St-Nov and Pm-HD-L-St-Nov had mortality higher than 80% in concentrations of 25 µg·mL−1. This in silico study on essential oils elucidated the potential mechanism of interaction of the main compounds, which may serve as a basis for advances in this line of research.

Funder

Universidade Federal do Para

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3