Abstract
Genetic improvement of milk fatty acid content traits in dairy cattle is of great significance. However, chromatography-based methods to measure milk fatty acid content have several disadvantages. Thus, quick and accurate predictions of various milk fatty acid contents based on the mid-infrared spectrum (MIRS) from dairy herd improvement (DHI) data are essential and meaningful to expand the amount of phenotypic data available. In this study, 24 kinds of milk fatty acid concentrations were measured from the milk samples of 336 Holstein cows in Shandong Province, China, using the gas chromatography (GC) technique, which simultaneously produced MIRS values for the prediction of fatty acids. After quantification by the GC technique, milk fatty acid contents expressed as g/100 g of milk (milk-basis) and g/100 g of fat (fat-basis) were processed by five spectral pre-processing algorithms: first-order derivative (DER1), second-order derivative (DER2), multiple scattering correction (MSC), standard normal transform (SNV), and Savitzky–Golsy convolution smoothing (SG), and four regression models: random forest regression (RFR), partial least square regression (PLSR), least absolute shrinkage and selection operator regression (LassoR), and ridge regression (RidgeR). Two ranges of wavebands (4000~400 cm−1 and 3017~2823 cm−1/1805~1734 cm−1) were also used in the above analysis. The prediction accuracy was evaluated using a 10-fold cross validation procedure, with the ratio of the training set and the test set as 3:1, where the determination coefficient (R2) and residual predictive deviation (RPD) were used for evaluations. The results showed that 17 out of 31 milk fatty acids were accurately predicted using MIRS, with RPD values higher than 2 and R2 values higher than 0.75. In addition, 16 out of 31 fatty acids were accurately predicted by RFR, indicating that the ensemble learning model potentially resulted in a higher prediction accuracy. Meanwhile, DER1, DER2 and SG pre-processing algorithms led to high prediction accuracy for most fatty acids. In summary, these results imply that the application of MIRS to predict the fatty acid contents of milk is feasible.
Funder
Shandong Provincial Natural Science Foundation
National Key R&D Program of China
Earmarked Fund
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference35 articles.
1. Christie, W. (1983). Developments in Dairy Chemistry—2, Springer.
2. Balaji, B., Dehghan, M., Mente, A., Rangarajan, S., and Yusuf, S. (2019). Association of Dairy Consumption with Metabolic Syndrome, Hypertension and Diabetes in 147,812 Individuals from 21 Countries. SSRN Electron. J.
3. Bovine milk in human nutrition—A review;Haug;Lipids Health Dis.,2007
4. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries;Soyeurt;J. Dairy Sci.,2011
5. Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets;Fleming;J. Dairy Sci.,2017
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献