Ammonothermal Crystal Growth of Functional Nitrides for Semiconductor Devices: Status and Potential

Author:

Wostatek Thomas1ORCID,Chirala V. Y. M. Rajesh1ORCID,Stoddard Nathan2ORCID,Civas Ege N.1,Pimputkar Siddha2ORCID,Schimmel Saskia1ORCID

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Electron Devices (LEB), Cauerstraße 6, 91058 Erlangen, Germany

2. Department of Materials Science and Engineering, Lehigh University, 5 E Packer Avenue, Bethlehem, PA 18015, USA

Abstract

The state-of-the-art ammonothermal method for the growth of nitrides is reviewed here, with an emphasis on binary and ternary nitrides beyond GaN. A wide range of relevant aspects are covered, from fundamental autoclave technology, to reactivity and solubility of elements, to synthesized crystalline nitride materials and their properties. Initially, the potential of emerging and novel nitrides is discussed, motivating their synthesis in single crystal form. This is followed by a summary of our current understanding of the reactivity/solubility of species and the state-of-the-art single crystal synthesis for GaN, AlN, AlGaN, BN, InN, and, more generally, ternary and higher order nitrides. Investigation of the synthesized materials is presented, with a focus on point defects (impurities, native defects including hydrogenated vacancies) based on GaN and potential pathways for their mitigation or circumvention for achieving a wide range of controllable functional and structural material properties. Lastly, recent developments in autoclave technology are reviewed, based on GaN, with a focus on advances in development of in situ technologies, including in situ temperature measurements, optical absorption via UV/Vis spectroscopy, imaging of the solution and crystals via optical (visible, X-ray), along with use of X-ray computed tomography and diffraction. While time intensive to develop, these technologies are now capable of offering unprecedented insight into the autoclave and, hence, facilitating the rapid exploration of novel nitride synthesis using the ammonothermal method.

Funder

Deutsche Forschungsgemeinschaft

Lehigh University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3